博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
(流式、lambda、触发器)实时处理大比拼 - 物联网(IoT)\金融,时序处理最佳实践
阅读量:5967 次
发布时间:2019-06-19

本文共 23486 字,大约阅读时间需要 78 分钟。

标签

PostgreSQL , 物联网 , 传感器 , lambda , 调度 , 实时 , 流式更新 , UPSERT , insert on conflict do update


背景

越来越多的数据要求实时的分析、聚合、展示最新值、展示异常值、实时的搜索。

例如 金融数据、物联网传感器的数据、网络游戏的在线数据等等。

关于实时搜索,可以参考这篇最佳实践:

关于海量数据的"写入、共享、存储、计算",以及离线分析,则可以参考这篇最佳实践:

关于实时分析、实时更新、实时聚合、实时展示最新值、异常值,是本文的主要内容。

提起实时分析,不得不说流式计算,用户可以参考本文:

pipelinedb是一个SQL接口的流计算数据库,正在进行插件化的改造,未来可以作为PostgreSQL数据库的插件使用。

本文将以传感器数据的实时写入、实时更新最新值、实时统计为例,分析三种不同的方案(流式、lambda式、同步实时)的优缺点。

场景设计

有一百万个传感器,每个传感器定期上报数据,用户需求:

1. 实时的查看传感器的最新值,

2. 实时按时间段查看传感器历史数据的统计值。

3. 实时查看传感器的历史明细数据。

4. 实时按其他维度查看传感器历史数据的统计值。

由于数据量可能非常庞大(100TB级),为了实现这4个需求,要求统计数据需要实时或准实时的被计算出来。

表结构设计

明细数据

create table sensor_data(      pk serial8 primary key, -- 主键      ts timestamp,  -- 时间戳      sid int,  -- 传感器ID      val numeric(10,2)  -- 数据    );

实时聚合设计

1. 每个传感器最后的value

create table sensor_lastdata(      sid int primary key,  -- 传感器ID,主键      last_ts timestamp,  -- 时间戳      last_val numeric(10,2)  -- 值    );

2. 每个传感器每个时段(例如小时)的所有值,总和,记录数,最大值,最小值,平均值,方差。

create table sensor_aggdata(      sid int,  -- 传感器ID      ts_group varchar(10),  -- 时间维度分组,例如小时(yyyymmddhh24)      sum_val numeric,  -- 和      min_val numeric(10,2),  -- 最小值      max_val numeric(10,2),  -- 最大值      avg_val numeric(10,2),  -- 平均值      count_val int,  -- 计数      all_vals numeric(10,2)[],  -- 明细值      unique (sid,ts_group)  -- 唯一约束    );

3. 按地域或其他维度,实时统计传感器上报的数据

如何从明细数据取传感器的最新值

取出每个传感器ID的最新值。使用SQL来取,有两种方法,一种是聚合,另一种是窗口函数。

插入一批测试数据

postgres=#  insert into sensor_data(ts,sid,val) select clock_timestamp(), random()*100, random()*10000 from generate_series(1,100000);

方法1,聚合。

按SID分组,将VAL聚合为数组(按PK逆序排序),取数组的第一个VALUE。

参考用法:

postgres=#  select sid, (array_agg(ts order by pk desc))[1] as last_ts, (array_agg(val order by pk desc))[1] as last_val from sensor_data group by sid;     sid |          last_ts           | last_val     -----+----------------------------+----------       0 | 2017-05-18 14:09:10.625812 |  6480.54       1 | 2017-05-18 14:09:10.627607 |  9644.29       2 | 2017-05-18 14:09:10.627951 |  3995.04       3 | 2017-05-18 14:09:10.627466 |   840.80       4 | 2017-05-18 14:09:10.627703 |  1500.59       5 | 2017-05-18 14:09:10.627813 |  3109.42       6 | 2017-05-18 14:09:10.62754  |  4131.31       7 | 2017-05-18 14:09:10.627851 |  9333.88    ......

方法2,窗口。

postgres=# select sid,ts,val from (select sid,ts,val,row_number() over(partition by sid order by pk desc) as rn from sensor_data) t where rn=1;     sid |             ts             |   val       -----+----------------------------+---------       0 | 2017-05-18 14:09:10.625812 | 6480.54       1 | 2017-05-18 14:09:10.627607 | 9644.29       2 | 2017-05-18 14:09:10.627951 | 3995.04       3 | 2017-05-18 14:09:10.627466 |  840.80       4 | 2017-05-18 14:09:10.627703 | 1500.59       5 | 2017-05-18 14:09:10.627813 | 3109.42       6 | 2017-05-18 14:09:10.62754  | 4131.31       7 | 2017-05-18 14:09:10.627851 | 9333.88    ......

这两种方法哪种好一点呢?请看执行计划

postgres=# set work_mem ='16MB';    SET    postgres=# explain (analyze,verbose,timing,costs,buffers) select sid, (array_agg(ts order by pk desc))[1] as last_ts, (array_agg(val order by pk desc))[1] as last_val from sensor_data group by sid;                                                                 QUERY PLAN                                                                 ------------------------------------------------------------------------------------------------------------------------------------     GroupAggregate  (cost=7117.15..7823.57 rows=101 width=44) (actual time=29.628..88.095 rows=101 loops=1)       Output: sid, (array_agg(ts ORDER BY pk DESC))[1], (array_agg(val ORDER BY pk DESC))[1]       Group Key: sensor_data.sid       Buffers: shared hit=736       ->  Sort  (cost=7117.15..7293.38 rows=70490 width=26) (actual time=29.273..36.249 rows=70490 loops=1)             Output: sid, ts, pk, val             Sort Key: sensor_data.sid             Sort Method: quicksort  Memory: 8580kB             Buffers: shared hit=736             ->  Seq Scan on public.sensor_data  (cost=0.00..1440.90 rows=70490 width=26) (actual time=0.243..9.768 rows=70490 loops=1)                   Output: sid, ts, pk, val                   Buffers: shared hit=736     Planning time: 0.077 ms     Execution time: 88.489 ms    (14 rows)        postgres=# explain (analyze,verbose,timing,costs,buffers) select sid,ts,val from (select sid,ts,val,row_number() over(partition by sid order by pk desc) as rn from sensor_data) t where rn=1;                                                                    QUERY PLAN                                                                    ------------------------------------------------------------------------------------------------------------------------------------------     Subquery Scan on t  (cost=7117.15..9408.08 rows=352 width=18) (actual time=46.074..81.377 rows=101 loops=1)       Output: t.sid, t.ts, t.val       Filter: (t.rn = 1)       Rows Removed by Filter: 70389       Buffers: shared hit=736       ->  WindowAgg  (cost=7117.15..8526.95 rows=70490 width=34) (actual time=46.072..76.115 rows=70490 loops=1)             Output: sensor_data.sid, sensor_data.ts, sensor_data.val, row_number() OVER (?), sensor_data.pk             Buffers: shared hit=736             ->  Sort  (cost=7117.15..7293.38 rows=70490 width=26) (actual time=46.065..51.742 rows=70490 loops=1)                   Output: sensor_data.sid, sensor_data.pk, sensor_data.ts, sensor_data.val                   Sort Key: sensor_data.sid, sensor_data.pk DESC                   Sort Method: quicksort  Memory: 8580kB                   Buffers: shared hit=736                   ->  Seq Scan on public.sensor_data  (cost=0.00..1440.90 rows=70490 width=26) (actual time=0.245..9.863 rows=70490 loops=1)                         Output: sensor_data.sid, sensor_data.pk, sensor_data.ts, sensor_data.val                         Buffers: shared hit=736     Planning time: 0.100 ms     Execution time: 82.480 ms    (18 rows)

实时更新、统计 - 设计与压测

1. lambda

lambda方式,传感器数据写入明细表,以任务调度的方式,从明细表取出数据并删除,将取出的数据进行增量统计,合并到统计结果中。

统计维度可能较多,为了并行,剥离数据获取和删除部分的功能。

批量获取并删除明细数据,按pk排序,批量获取若干条。

函数如下:

create or replace function get_sensor_data(i_limit int) returns sensor_data[] as $$    declare      arr_pk int8[];      arr_sensor_data sensor_data[];    begin      select array_agg(t.sensor_data), array_agg((t.sensor_data).pk)        into arr_sensor_data, arr_pk        from (select sensor_data from sensor_data order by pk limit i_limit for update skip locked) t ;      delete from sensor_data WHERE pk = any (arr_pk);      return arr_sensor_data;    end;    $$ language plpgsql strict;

明细数据获取到之后,继续下一步的动作。

存在则更新,不存在则插入,采用PostgreSQL的insert on conflict语法。

1. 实时更新传感器的最新值

insert into sensor_lastdata      select sid, (array_agg(ts order by pk desc))[1] as last_ts, (array_agg(val order by pk desc))[1] as last_val from         unnest(get_sensor_data(1000))       group by sid    on conflict (sid) do update set last_ts=excluded.last_ts,last_val=excluded.last_val;

2. 批量增量统计传感器的值

统计值的合并方法请关注SQL内容,明细数据按SID聚合为数组按PK顺序存放。

insert into sensor_aggdata (sid,ts_group,sum_val,min_val,max_val,avg_val,count_val,all_vals)    select sid,to_char(ts,'yyyymmddhh24'),sum(val),min(val),max(val),avg(val),count(val),array_agg(val order by pk) from unnest(get_sensor_data(1000))       group by sid,to_char(ts,'yyyymmddhh24')      on conflict (sid,ts_group) do update set         sum_val=sensor_aggdata.sum_val+excluded.sum_val,        min_val=least(sensor_aggdata.min_val, excluded.min_val),        max_val=greatest(sensor_aggdata.max_val, excluded.max_val),        avg_val=(sensor_aggdata.sum_val+excluded.sum_val)/(sensor_aggdata.count_val+excluded.count_val),        count_val=sensor_aggdata.count_val+excluded.count_val,        all_vals=array_cat(sensor_aggdata.all_vals, excluded.all_vals);

压测

create table sensor_data(      pk serial8 primary key, -- 主键      ts timestamp,  -- 时间戳      sid int,  -- 传感器ID      val numeric(10,2)  -- 数据    );        create table sensor_lastdata(      sid int primary key,  -- 传感器ID,主键      last_ts timestamp,  -- 时间戳      last_val numeric(10,2)  -- 值    );        create table sensor_aggdata(      sid int,  -- 传感器ID      ts_group varchar(10),  -- 时间维度分组,例如小时(yyyymmddhh24)      sum_val numeric,  -- 和      min_val numeric(10,2),  -- 最小值      max_val numeric(10,2),  -- 最大值      avg_val numeric(10,2),  -- 平均值      count_val int,  -- 计数      all_vals numeric(10,2)[],  -- 明细值      unique (sid,ts_group)  -- 唯一约束    );
压测1,实时写入,并实时更新传感器的最新值

vi ins.sql    \set sid random(1,1000000)    insert into sensor_data(ts,sid,val) values (clock_timestamp(), :sid, random()*1000);

每次合并5万条

vi lambda1.sql    insert into sensor_lastdata select sid, (array_agg(ts order by pk desc))[1] as last_ts, (array_agg(val order by pk desc))[1] as last_val from unnest(get_sensor_data(50000)) group by sid on conflict (sid) do update set last_ts=excluded.last_ts,last_val=excluded.last_val;

写入约10万条/s。

pgbench -M prepared -n -r -P 1 -f ./ins.sql -c 64 -j 64 -T 120        transaction type: ./ins.sql    scaling factor: 1    query mode: prepared    number of clients: 64    number of threads: 64    duration: 120 s    number of transactions actually processed: 12742596    latency average = 0.603 ms    latency stddev = 2.163 ms    tps = 106184.095420 (including connections establishing)    tps = 106188.650794 (excluding connections establishing)    script statistics:     - statement latencies in milliseconds:             0.001  \set sid random(1,1000000)             0.602  insert into sensor_data(ts,sid,val) values (clock_timestamp(), :sid, random()*1000);

增量消费,并更新最新值约5万条/s。

pgbench -M prepared -n -r -P 1 -f ./lambda1.sql -c 1 -j 1 -T 1200        progress: 236.0 s, 1.0 tps, lat 649.196 ms stddev 0.000    progress: 237.0 s, 2.0 tps, lat 868.952 ms stddev 6.024    progress: 238.0 s, 1.0 tps, lat 728.553 ms stddev 0.000    progress: 239.0 s, 258.1 tps, lat 5.335 ms stddev 44.167    progress: 240.0 s, 850.9 tps, lat 0.983 ms stddev 14.506    progress: 241.0 s, 7962.2 tps, lat 0.146 ms stddev 3.672    progress: 242.0 s, 13488.1 tps, lat 0.074 ms stddev 0.006        postgres=# select count(*) from sensor_data;     count     -------         0    (1 row)        postgres=# select * from sensor_lastdata  limit 10;     sid  |          last_ts           | last_val     ------+----------------------------+----------      672 | 2017-05-18 16:33:43.569255 |   196.01      178 | 2017-05-18 16:33:31.23651  |   593.16      686 | 2017-05-18 16:33:38.792138 |   762.95     4906 | 2017-05-18 16:33:43.498217 |   150.13      544 | 2017-05-18 16:33:45.338635 |   410.31      165 | 2017-05-18 16:33:28.393902 |   678.75      625 | 2017-05-18 16:33:37.077898 |   229.06     1316 | 2017-05-18 16:33:45.218268 |    27.55     3091 | 2017-05-18 16:33:33.320828 |   697.75      340 | 2017-05-18 16:33:31.567852 |    24.18    (10 rows)

每批统计10万时,性能可以略微提升

progress: 211.0 s, 1.0 tps, lat 1428.401 ms stddev 0.000    progress: 212.0 s, 0.0 tps, lat -nan ms stddev -nan    progress: 213.0 s, 1.0 tps, lat 1375.766 ms stddev 0.000    progress: 214.0 s, 2665.9 tps, lat 0.699 ms stddev 23.234    progress: 215.0 s, 8963.1 tps, lat 0.083 ms stddev 0.008    progress: 216.0 s, 1699.4 tps, lat 0.741 ms stddev 12.434    progress: 217.0 s, 13247.9 tps, lat 0.075 ms stddev 0.006
压测2,实时写入,并批量增量统计传感器的值

每次合并10万条

vi lambda2.sql    insert into sensor_aggdata (sid,ts_group,sum_val,min_val,max_val,avg_val,count_val,all_vals) select sid,to_char(ts,'yyyymmddhh24'),sum(val),min(val),max(val),avg(val),count(val),array_agg(val order by pk) from unnest(get_sensor_data(100000))   group by sid,to_char(ts,'yyyymmddhh24')  on conflict (sid,ts_group) do update set     sum_val=sensor_aggdata.sum_val+excluded.sum_val,    min_val=least(sensor_aggdata.min_val, excluded.min_val),    max_val=greatest(sensor_aggdata.max_val, excluded.max_val),    avg_val=(sensor_aggdata.sum_val+excluded.sum_val)/(sensor_aggdata.count_val+excluded.count_val),    count_val=sensor_aggdata.count_val+excluded.count_val,    all_vals=array_cat(sensor_aggdata.all_vals, excluded.all_vals);

写入约10万条/s。

pgbench -M prepared -n -r -P 1 -f ./ins.sql -c 64 -j 64 -T 120        transaction type: ./ins.sql    scaling factor: 1    query mode: prepared    number of clients: 64    number of threads: 64    duration: 120 s    number of transactions actually processed: 12753950    latency average = 0.602 ms    latency stddev = 2.733 ms    tps = 106272.985233 (including connections establishing)    tps = 106277.604416 (excluding connections establishing)    script statistics:     - statement latencies in milliseconds:             0.001  \set sid random(1,1000000)             0.601  insert into sensor_data(ts,sid,val) values (clock_timestamp(), :sid, random()*1000);

增量消费,并统计约4.4万条/s。

pgbench -M prepared -n -r -P 1 -f ./lambda2.sql -c 1 -j 1 -T 1200        progress: 287.0 s, 1.0 tps, lat 2107.584 ms stddev 0.000    progress: 288.0 s, 0.0 tps, lat -nan ms stddev -nan    progress: 289.0 s, 100.1 tps, lat 29.854 ms stddev 213.634    progress: 290.0 s, 1855.0 tps, lat 0.540 ms stddev 5.677    progress: 291.0 s, 8447.0 tps, lat 0.118 ms stddev 0.005        postgres=# select * from sensor_aggdata limit 10;      sid   |  ts_group  | sum_val  | min_val | max_val | avg_val | count_val |                                                                      all_vals                                                                          --------+------------+----------+---------+---------+---------+-----------+--------------------------------------------------------------------------------        6 | 2017051816 |  1842.71 |   42.47 |  577.09 |  307.12 |         6 | {42.47,559.47,577.09,193.62,75.74,394.32}          2 | 2017051816 |  5254.01 |   69.98 |  861.77 |  437.83 |        12 | {628.03,77.15,662.74,69.98,337.83,563.70,750.44,423.81,158.27,861.77,649.27,71.02}        226 | 2017051816 |  2756.42 |  144.00 |  680.45 |  344.55 |         8 | {350.57,144.00,194.23,352.52,680.45,302.66,420.01,311.98}        509 | 2017051816 |  6235.10 |   44.98 |  939.43 |  566.83 |        11 | {939.43,598.33,741.12,535.66,44.98,732.00,694.66,440.00,327.80,312.98,868.14}         20 | 2017051816 |  4684.00 |    7.01 |  878.64 |  425.82 |        11 | {209.70,288.67,76.35,544.31,289.33,7.01,841.21,878.64,418.05,651.01,479.72}     934042 | 2017051816 | 10210.41 |   46.44 |  945.59 |  486.21 |        21 | {235.86,656.24,450.73,945.59,932.06,256.10,46.44,903.74,694.43,713.79,523.25,325.82,333.67,603.01,743.63,137.48,238.60,321.65,466.50,70.49,611.33}       960 | 2017051816 |  3621.60 |   20.59 |  895.01 |  603.60 |         6 | {347.70,876.07,895.01,20.59,871.64,610.59}         81 | 2017051816 |  4209.38 |  459.06 |  949.42 |  701.56 |         6 | {716.38,949.42,706.20,459.06,613.36,764.96}     723065 | 2017051816 |  7176.00 |   12.37 |  983.84 |  512.57 |        14 | {869.29,715.48,323.42,595.29,983.84,700.06,716.37,741.55,137.88,12.37,334.74,951.94,46.85,46.92}         77 | 2017051816 |  5394.54 |   87.43 |  872.90 |  490.41 |        11 | {301.87,777.52,872.90,219.96,87.43,525.80,308.87,509.80,383.90,608.52,797.97}    (10 rows)

2. 流式计算

流式计算,使用PipelineDB,创建stream(即明细表),然后创建实时更新表,以及统计表。

1. 创建传感器明细数据stream。

create sequence seq;  -- 创建PK序列        pipeline=# create stream sensor_data(    pk int8, -- 用于排序,取最新值的PK    ts timestamp, -- 时间戳    sid int, -- 传感器ID    val numeric(10,2)  -- 值    );        CREATE STREAM

2. 创建实时更新传感器最新值的CONTINUOUS VIEW

请使用pipelinedb独有的获取分组最新值的聚合函数

keyed_max ( key, value )    Returns the value associated with the “highest” key.  keyed_min ( key, value )    Returns the value associated with the “lowest” key.

请勿使用(array_agg(ts order by pk desc))[1],pipelinedb对agg(order by)支持不好

-- pipelinedb目前对agg(order by)支持不佳,测试写入时报错    CREATE CONTINUOUS VIEW sensor_lastdata1 AS       select sid, (array_agg(ts order by pk desc))[1] as last_ts, (array_agg(val order by pk desc))[1] as last_val         from  sensor_data      group by sid;        -- 1. 请使用这个SQL代替上面的SQL  CREATE CONTINUOUS VIEW sensor_lastdata1 AS       select sid, keyed_max(pk, ts) as last_ts, keyed_max(pk, val) as last_val         from  sensor_data      group by sid;        -- pipelinedb目前不支持window function,使用keyed_max, keyed_min代替。      CREATE CONTINUOUS VIEW sensor_lastdata2 AS       select sid,ts as last_ts,val as last_val from sensor_data      where row_number() over(partition by sid order by pk desc)=1;        ERROR:  subqueries in continuous views cannot contain window functions

3. 创建实时统计传感器数值,以及明细聚合的CONTINUOUS VIEW

-- pipelinedb目前对agg(order by)支持不佳,测试写入时报错    CREATE CONTINUOUS VIEW sensor_aggdata1 AS       select       sid,      to_char(ts,'yyyymmddhh24') as ts_group,      sum(val) as sum_val,      min(val) as min_val,      max(val) as max_val,      avg(val) as avg_val,      count(val) as count_val,      array_agg(val order by pk) as all_vals        from sensor_data      group by sid,to_char(ts,'yyyymmddhh24');        -- 2. 请使用这个SQL代替上面的SQL  CREATE CONTINUOUS VIEW sensor_aggdata1 AS       select       sid,      to_char(ts,'yyyymmddhh24') as ts_group,      sum(val) as sum_val,      min(val) as min_val,      max(val) as max_val,      avg(val) as avg_val,      count(val) as count_val,      jsonb_object_agg (pk, val) as all_vals        from sensor_data      group by sid,to_char(ts,'yyyymmddhh24');

4. 激活CONTINUOUS VIEW

pipeline=# activate sensor_lastdata1;    ACTIVATE    pipeline=# activate sensor_aggdata1;    ACTIVATE

压测

vi ins.sql        \set sid random(1,1000000)    insert into sensor_data(pk,ts,sid,val) values (nextval('seq'), clock_timestamp(), :sid, random()*1000);

pipelinedb目前对agg(order by)支持不佳的报错,如果你没有使用替代SQL,会收到如下报错。

/home/digoal/pgsql10/bin/pgbench -M prepared -n -r -P 1 -f ./ins.sql -c 1 -j 1 -T 100        progress: 1.0 s, 12.0 tps, lat 1.302 ms stddev 0.455    WARNING:  a background worker crashed while processing this batch    HINT:  Some of the tuples inserted in this batch might have been lost.    progress: 2.0 s, 16.0 tps, lat 70.528 ms stddev 253.719    WARNING:  a background worker crashed while processing this batch    HINT:  Some of the tuples inserted in this batch might have been lost.    WARNING:  a background worker crashed while processing this batch    HINT:  Some of the tuples inserted in this batch might have been lost.    WARNING:  a background worker crashed while processing this batch    HINT:  Some of the tuples inserted in this batch might have been lost.

使用替代SQL,压测结果:

1. 聚合values,压测结果:

写入速度12.7万/s。

/home/digoal/pgsql10/bin/pgbench -M prepared -n -r -P 1 -f ./ins.sql -c 256 -j 256 -T 100      transaction type: ./ins.sql  scaling factor: 1  query mode: prepared  number of clients: 256  number of threads: 256  duration: 100 s  number of transactions actually processed: 12840629  latency average = 1.994 ms  latency stddev = 14.671 ms  tps = 127857.131372 (including connections establishing)  tps = 127864.890658 (excluding connections establishing)  script statistics:   - statement latencies in milliseconds:           0.001  \set sid random(1,1000000)             1.997  insert into sensor_data(pk,ts,sid,val) values (nextval('seq'), clock_timestamp(), :sid, random()*1000);
pipeline=# select * from sensor_aggdata1 limit 10;  -[ RECORD 1 ]----------------------------------------------------------------------------------------------------------------------------------------------  sid       | 444427  ts_group  | 2017052410  sum_val   | 4902.07  min_val   | 18.69  max_val   | 980.26  avg_val   | 445.6427272727272727  count_val | 11  all_vals  | {"41971591": 731.45, "42075280": 69.63, "42629210": 980.26, "45243895": 18.69, "45524545": 320.88, "46971341": 741.88, "47036195": 357.47, "47895869": 562.16, "49805560": 136.78, "51753795": 344.00, "53039367": 638.87}

2. 不聚合VALUES,压测结果:

写入速度20万/s。

CREATE CONTINUOUS VIEW sensor_aggdata2 AS       select       sid,      to_char(ts,'yyyymmddhh24') as ts_group,      sum(val) as sum_val,      min(val) as min_val,      max(val) as max_val,      avg(val) as avg_val,      count(val) as count_val      -- jsonb_object_agg (pk, val) as all_vals        from sensor_data      group by sid,to_char(ts,'yyyymmddhh24');
/home/digoal/pgsql10/bin/pgbench -M prepared -n -r -P 1 -f ./ins.sql -c 256 -j 256 -T 100        transaction type: ./ins.sql    scaling factor: 1    query mode: prepared    number of clients: 256    number of threads: 256    duration: 100 s    number of transactions actually processed: 20940292    latency average = 1.222 ms    latency stddev = 0.423 ms    tps = 208834.531839 (including connections establishing)    tps = 208854.792937 (excluding connections establishing)    script statistics:     - statement latencies in milliseconds:             0.001  \set sid random(1,1000000)             1.222  insert into sensor_data(pk,ts,sid,val) values (nextval('seq'), clock_timestamp(), :sid, random()*1000);            pipeline=# select * from sensor_aggdata2;     sid  |  ts_group  |   sum_val   | min_val | max_val |       avg_val        | count_val     ------+------------+-------------+---------+---------+----------------------+-----------      196 | 2017051815 | 11462397.00 |    0.00 |  999.99 | 503.1780948200175593 |     22780      833 | 2017051815 | 11479990.49 |    0.07 |  999.99 | 498.4365443730461966 |     23032      700 | 2017051815 | 11205820.52 |    0.04 |  999.97 | 497.1967574762623125 |     22538       83 | 2017051815 | 11466423.01 |    0.01 |  999.93 | 501.3959075604530150 |     22869      526 | 2017051815 | 11389541.40 |    0.01 |  999.99 | 503.4496485877204615 |     22623      996 | 2017051815 | 11416373.92 |    0.03 |  999.99 | 502.1938996172964413 |     22733      262 | 2017051815 | 11458700.05 |    0.03 |  999.98 | 499.5509656465254163 |     22938      542 | 2017051815 | 11365373.33 |    0.00 |  999.95 | 499.6427366246098387 |     22747    ......

3. 实时

实时的写入明细,同步更新最终状态。

(同步统计不推荐使用,对写入的RT性能影响比较大)

实时更新传感器最终状态表

create table sensor_lastdata(      sid int primary key,      last_ts timestamp,      last_val numeric(10,2)    );

压测1,更新传感器实时状态

vi ins.sql        \set sid random(1,1000000)    insert into sensor_lastdata values (:sid, now(), random()*1000) on conflict (sid) do update set last_ts=excluded.last_ts,last_val=excluded.last_val;

性能,约18万/s。

/home/digoal/pgsql10/bin/pgbench -M prepared -n -r -P 1 -f ./ins.sql -c 128 -j 128 -T 100        transaction type: ./ins.sql    scaling factor: 1    query mode: prepared    number of clients: 128    number of threads: 128    duration: 100 s    number of transactions actually processed: 18659587    latency average = 0.686 ms    latency stddev = 2.566 ms    tps = 186557.140033 (including connections establishing)    tps = 186565.458460 (excluding connections establishing)    script statistics:     - statement latencies in milliseconds:             0.001  \set sid random(1,1000000)             0.684  insert into sensor_lastdata values (:sid, now(), random()*1000) on conflict (sid) do update set last_ts=excluded.last_ts,last_val=excluded.last_val;

三种方案对比

性能对比

1. 写入明细记录的速度

lambda方式:10.6万/s

流计算方式(含val明细聚合):12.78万/s

流计算方式(不含val明细聚合):20.8万/s

2. 更新最终状态速度

lambda方式:5.98万/s

实时方式:18.6万/s

流计算方式:20.8万/s

3. 统计速度

lambda方式(含val明细聚合):4.4万/s

流计算方式(含val明细聚合):12.78万/s

流计算方式(不含val明细聚合):20.8万/s

优劣与适用场合对比

1. lambda方式

性能中规中矩,通过UDF + 增量调度,支持所有的统计模式。

目前这个方案有成熟的用户案例(某大数据平台),支持了每天数TB的数据准实时统计。

同时也期待PG社区开发这样的功能:

delete from table order by pk limit xxx skip locked returning array_agg(ts),array_agg(val) group by sid;

这种QUERY将以最小的开销,从数据中删除并返回一批记录。相比本例,也许能提升一倍性能。

2. 流计算方式

性能最高,使用也便利,推荐使用。

将来pipelinedb插件化之后,使用起来就更加方便了。

3. 实时方式

如果只是用来更新最终状态,建议使用,开发工作量最少,不需要调度。

参考

转载地址:http://xchax.baihongyu.com/

你可能感兴趣的文章
VBS操作注册表设置新建读取,删除等操作(更新中)
查看>>
oracle中的替换函数replace和translate函数
查看>>
Vue 项目创建并发布
查看>>
45个非常有用的Oracle查询语句(转自开源中国社区)
查看>>
[BZOJ2820]YY的GCD
查看>>
HDU 2571(dp)题解
查看>>
数据类型的内置函数
查看>>
自定义选中文字背景色
查看>>
win10+ubuntu双系统安装方案
查看>>
菜鸟回归……
查看>>
杭电2066--一个人的旅行(Floyd)
查看>>
【随笔】 我的努比亚z7 mini 相机复活记
查看>>
让我的网站变成响应式的3个简单步骤
查看>>
最短路中部分点只能从中任意选取K个问题
查看>>
UDP编程
查看>>
onInterceptTouchEvent / onTouchEvent响应事件的详析
查看>>
html5实例-闪烁的星星
查看>>
PAT_A1143#Lowest Common Ancestor
查看>>
[转载]Linux驱动-SPI驱动 之二:SPI通用接口层
查看>>
Python之网络编程(Socket)
查看>>